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Several proof-of-stake blockchains allow for “staking pools”, i.e. agents interested 

in validating transactions can open a pool to which others can delegate their stake. 

We develop a game-theoretic model of staking pool formation in the presence of 

malicious agents who want to disrupt the blockchain. We establish existence and 

uniqueness of equilibria. Moreover, we identify the potential and risk of staking 

pools. First, staking pools can never increase current blockchain security over a 

system in which such pools are not allowed. Yet, by optimally selecting the 

distribution of the validation returns, honest stake holders obtain higher returns, 

which may be beneficial for future blockchain operations. Second, by choosing 

welfare optimal distribution rewards, staking pools prevent from allocating large 

rewards to malicious agents. Third, when pool owners can freely distribute the 

returns from validation to delegators, staking pools disrupt blockchain operations, 

since malicious agents attract all delegators by distributing most of the returns to 

them. 

 

 1 Introduction 

From both the financial side and the security side, there are reasons why a proof-of-stake 

blockchain may want to allow the formation of staking pools. With staking pools, agents 

interested in validating transactions are allowed to open a pool, such that others can 

delegate their stake for some time to it. For delegating agents who are not interested in 

validating transactions, this can provide an additional income on their token holdings. In 

turn, their stakes are blocked and cannot be used for other purposes during the time of 
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commitment. By agents we mean all participants of the decentralized system who own at 

least some stake, which usually takes the form of a native token. Agents interested in 

running a staking pool could earn a higher income from their transaction validation 

activities.1 

Ideally, such a staking system makes it more attractive to hold tokens, provides 

incentives for a sufficient number of agents to run staking pools and act as transaction 

validators, and increases the share of honest agents, weighted by the stakes they hold, 

involved in transaction validation. As every staking pool is a validator, we occasionally 

use the word “validator” for a staking pool. 

However, malicious agents also run staking pools and may thus enlarge the share of 

the stake they control in transaction validation.2 This may undermine the security of the 

blockchain and lead to a collapse of this blockchain, as the malicious agents take over. 

We explore how such a system can be modeled and designed so that it operates 

beneficially for the decentralized consensus mechanism—i.e. by lowering the share of 

malicious agents who want to disrupt the validation of transactions—and for the 

ecosystem as a whole. The model invokes a measure of honest agents who are interested 

in the returns from holding a stake (of tokens) in a proof-of-stake blockchain and thus are 

also interested in the proper functioning of the blockchain. An agent is honest if he is 

prepared to run the software for validation as required by the system. Otherwise, honest 

agents choose actions to maximize their expected returns. Honest agents have different 

costs in participating in transaction validation, as availability of appropriate computer 

software, the knowledge to run a secure validation node and opportunity costs to engage 

in validation activities may differ across agents. There is also a measure of malicious 

agents who are only interested in disrupting the blockchain. 

A Blockchain Designer aims at maximizing the chance that the blockchain is working 

(maximizing blockchain security), which will be captured by maximizing the number of 

honest validators. We will also consider an alternative objective where the Blockchain 

Designer trades off the probability that the blockchain is running correctly with the costs 

for all honest agents of validating transactions. This is a standard economic welfare 

criterion. Two further aspects can be important for a Blockchain Designer: Reducing the 

rewards for malicious agents, as this decreases their future influence and distributing the 

rewards to validators as equally as possible. 

The Blockchain Designer has two basic options when designing the market for staking 

pools. First, he can fix the return distribution between the pool owner and the pool 

delegators. We call this “return fixing”. Second, he can allow competition of pool runners 

                                                        
1 An agent that decides to run a pool and validate transactions is usually referred as a node of a network. 
2 Our assumption that malicious agents always run staking pools is justified, since if they do not, they 

do not affect blockchain functioning and thus cannot be called malicious. If they delegate their stakes, they 

act like honest delegators and thus again are not malicious in any way. 
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regarding how the returns from transaction validation are shared between the pool 

owner and the pool delegators. This is called “return competition”. 

We model the ensuing interaction as a three-stage game. In the first stage, agents 

decide whether (i) to open a staking pool, (ii) to delegate their stake to some pool or (iii) 

to abstain from validation activities. Setting up pools for validating transactions is costly, 

and these costs may differ between agents. In the second stage, either the Blockchain 

Designer determines the shares uniformly for all running pools (return fixing) or pool 

owners determine how returns should be shared between pool owners and delegators 

(return competition). In the third stage, transactions are validated and, depending on the 

share of stakes controlled by malicious agents, validation either works properly or the 

blockchain is disrupted. 

Our main insights start from the observation that honest agents with high costs to set-

up a node as a validator may want to delegate their stake to other pool owners, while 

honest agents with low costs may want to open their own pool. Malicious agents always 

open a pool, as this increases their chances to disrupt the blockchain. 

We establish existence and uniqueness of equilibria of the stake pool formation game 

with fixed return distribution between pool owners and delegators and show that they 

are of the threshold type. We show next that there exists a unique sharing rule of the 

returns from validation between delegators and pool owners that maximizes the 

probability that the blockchain operates correctly and we do the same for maximizing 

welfare of honest agents when costs of running staking pools are taken into account in 

addition to blockchain security. Then, we provide numerical illustrations of the equilibria 

for uniform distribution of costs. 

Subsequently, we identify the potential and risk of staking pools. First, staking pools 

can never increase current blockchain security over a system in which no such pools are 

allowed. The reason is as follows. Without staking pools, a share of honest agents 

participates in validating transactions, as the additional reward is higher than the costs. 

With staking pools and if the returns are shared with the validators, the return to pool 

owners declines, as the average rewards from validating transactions is given. Hence, less 

honest agents are willing to open staking pools, so that malicious agents will control a 

larger share of stakes in validating transactions. 

Yet, by optimally choosing the distribution of the validation returns to delegators, the 

allocation of rewards to honest stakes involved in validation increases, which may be 

beneficial for subsequent blockchain operations. We show how return splitting between 

pool owners and delegators has to be determined in order to minimize the rewards to 

malicious agents. 

Second, by choosing welfare optimal distribution rewards, staking pools may decrease 

blockchain security, but it prevents allocating large rewards to only a fraction of agents. 

Third, when pool owners can freely distribute the returns from validation to delegators, 
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staking pools decrease blockchain security, since malicious agents attract delegators by 

distributing most of the returns to them. 

Finally, we show how our results can be extended to situations in which not only 

running a pool but also the act of delegation is costly. Moreover, as we use a continuum 

model for tractability reasons, we show how our analysis can be recasted—albeit with a 

more complex formal apparatus—in a discrete setting. 

The paper is organized as follows. In the next section, we discuss related literature. In 

particular, literature motivating the formation of staking pools in proof-of-stake 

blockchains is reviewed. In Section 3, we introduce the model and preliminaries. In 

Section 4, we analyze the equilibria of the fixed return game. In Section 5, we discuss 

designs for staking rewards that either maximize security or maximize welfare. Section 6 

addresses a uniform cost distribution and provides numerical examples. In Section 7, we 

analyze a return competition game, where pool owners individually decide on the reward 

sharing scheme. In Section 8, we study extensions of our basic model. Section 9 

concludes. 

 2 Related Literature 

Staking Pools: Many blockchains have already implemented staking or will implement it 

in the near future. Such examples include, but are not limited to Cardano 3 , Solana 

(Yakovenko (2017)), Polkadot (Wood (2016)), Tezos (Goodman (2014)) and Concordium 

(Damg˚ard et al. (2020)). All these allow staking pools in which agents who do not run 

their own staking pool will be able to delegate their stake to an existing pool and benefit 

from rewards. By delegation, agents are indirectly involved in block proposal and 

validation, via their stake. 

Bru¨njes et al. (2020) study staking pools among honest agents from an interesting 

mechanism design perspective. Their reward scheme ensures that a desired number of 

staking pools is achieved while each pool has approximately the same amount of stake 

and low-cost agents are running the pools. The reward scheme ensures that reporting the 

true costs is the dominant strategy. Our paper is complementary as we focus on the design 

of staking pools in the presence of malicious agents who want to disrupt the blockchain 

and thus have quite different objectives than honest agents. We examine on how such 

staking pools affect blockchain security, how security risks can be alleviated and how 

distribution of rewards to malicious agents can be limited. Our mechanism is also simpler 

to implement, as there is no communication between the designer and pool runners, and 

therefore, no need for contracting, unlike in Bru¨njes et al. (2020). It is also intuitive to 

interpret for the agents, than the generic mechanisms studied in there. 
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Blockchain and Consensus Protocols: There is a rapidly growing literature on blockchains 

and consensus protocols. The most common reference is Nakamoto (2008), a Bitcoin 

whitepaper, in which the consensus protocol proof-of-work is introduced. Many papers 

focusing on consensus protocols, that have been published recently, include John et al. 

(2020) and Benhaim et al. (2021). A widely cited paper on the game-theoretic analysis of 

blockchain is Biais et al. (2019). Benhaim et al. (2021) and Amoussou-Guenou et al. (2020) 

consider games in the presence of malicious agents. This aspect is also part of our model. In 

particular, we argue that the probability that the blockchain is well-functioning is increasing 

with the share of honest validators and achieves complete security (probability one) when 

the share of malicious agents falls below a certain threshold. More specific work on 

blockchain mining rewards from a game-theoretic angle are studied in Chen et al. 

(2019) and Kiayias et al. (2016). 

Model Assumptions: Herrera et al. (2014) study a voting game with two parties where 

voters vote for one party or abstain. In their model, voters have individual costs that are 

drawn according to some distribution function. Similarly to our paper, Herrera et al. 

(2014) characterize equilibria of their game which take the form of so called “cut-off 

thresholds”. They obtain a pair of thresholds, one for each party. Then, a citizen whose 

cost is below the corresponding threshold will turn out and vote for his party. If a citizen’s 

cost is above the threshold, he will abstain. Our model works in a similar manner. We 

characterize threshold equilibria such that if the cost for an individual is below that 

threshold, he will run a staking pool, and delegate or abstain otherwise. 

Similar to Herrera et al. (2014), Castanheira (2003) studies a voting game where 

citizens’ costs come from a specific distribution, namely, costs are distributed uniformly 

random. In our paper, we also consider a uniform distribution for costs. One key 

difference, however, is that the costs in Herrera et al. (2014) and Castanheira (2003) are 

costs of voting4, whereas in our paper, the costs are associated with running a pool and 

the costs connected to it. 

In our paper, we use continuum approach to model the measure of agents, and thus 

follow the approach in Gersbach (2009) and Halaburda et al. (2021), for instance. More 

concretely, agents are modeled as infinitely small. The continuum approximates large 

communities and it proves to be a tractable approach for the staking pool formation game. 

The continuum model is thus a limiting case where the number of agents becomes large 

and delegation to staking pools is done uniformly at random. In our model, besides a pool 

ID (or address), no further information is provided to delegators. From addresses or pool 

IDs, no information about pool owners can be inferred. Hence, every pool has equal 

                                                        
4 See the rational and costly voting literature (Palfrey and Rosenthal (1983), Ledyard (1984), B¨orgers 

(2004) and Gersbach et al. (2021b)). 
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chances to be chosen by agents.5 In the basic version of the model, delegation entails no 

cost. 

Crypto-Democracy and Vote Delegation: There is an extensive research on democracy 

and blockchains, such as voting on blockchain (see Leonardos et al. (2020), Osgood 

(2016) and Allen et al. (2017), for instance). Very recent work on vote delegation in the 

presence of malicious agents is Gersbach et al. (2021a). The delegation of votes can be 

seen as a delegation of stakes in the blockchain environment. Further literature in the 

field of vote delegation is known under “liquid democracy”, where besides voting and 

abstaining, agents have the additional option to delegate their vote to other agents (see 

Bloembergen et al. (2019), for example). 

Automated Market Maker (AMM): Staking is also used in other contexts such as yield 

aggregation6 and automated market maker. The analogy to staking pools is the following. 

There are liquidity providers who add funds to a liquidity pool that is managed by an 

AMM. The liquidity providers correspond to agents who delegate their stake in our model. 

Hence, the AMMs collect funds in a liquidity pool that can be traded later. 7 In return, 

liquidity providers receive tokens proportional to their staked amount, which correspond 

to the rewards in our model. Besides these analogies, AMMs have other tasks as well, such 

as determining prices for traders. A well-known AMM is Uniswap, for example (see 

Hayden Adams (2020)). 

 3 Model 

 3.1 The General Set-up 

There is a continuum of measure H of honest agents and there is a continuum of measure 

M of malicious agents. The continua can be represented by intervals on the real line, with 

length H and M, respectively. We assume H > M, so that, honest agents are in the majority. 

Each agent (malicious or honest) has one unit of the stake.8 

Each honest agent is identified by his cost level for validation of transactions, 

respectively, for running a staking pool on the blockchain.9 Costs are denoted by c and are 

heterogeneous across honest agents, as they depend on the availability of appropriate 

                                                        
5 In practice, delegators may have more information about pool owners, but they remain anonymous. 

On the Cardano blockchain, for example, agents can find all staking pools on pool.pm, which visualizes all 

staking pools with the pool IDs, the current stake of the pools, the number of delegators and which blocks 

were produced by which staking pool. 
6 Under yield aggregation, investors can passively earn rewards by sending tokens to reward generating 

smart contracts (see Cousaert et al. (2021)). 
7 Note that the liquidity pools hold at least two different assets, which is a major difference to staking pools. 
8 As the total amount of stakes is infinite, all variables which are integrated over the set of agents are 

averages in the continuum model. 
9 Costs include, for example, the costs for registering, running the software and forwarding messages on 

transactions. 
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computer capital and human capital. Let the random variable X correspond to the costs 

for honest agents. Specifically, the costs for honest agents are distributed according to the 

atomless density function f(c) defined on [0,T). Note that the support interval can be R+, 

that is, T can be equal to ∞. The corresponding cumulative distribution function is 

denoted by F(c). Malicious agents are of the Byzantine type and do not care about the 

costs and returns of running a pool. Hence, we set their costs to zero. 

There is also a reward R ∈ R+, paid for creating the next block10. The agents’ types are 

private information. As assumed above all honest and malicious agents have the same 

amount of stakes, equal to one unit. There is also a Blockchain Designer. The blockchain is 

assumed to be functioning better if more of validators are honest. 

 3.2 Objectives 

The Blockchain Designer and the two types of agents have the following general 
objectives: 

• Maximize the chance that the blockchain is working (maximizing blockchain 

security), which will be captured by a maximization of the number of honest 

validators (Blockchain Designer). 

• Maximize expected reward minus cost (Honest Agents). 

• Maximize the measure of stakes delegated to them (Malicious Agents). 

We will formally specify the manifestation of these objectives later. As to the Blockchain 

Designer, we will consider an alternative objective where he trades-off the probability that 

the blockchain is running correctly with the costs for all honest agents to validate 

transactions. While we consider maximizing blockchain security as the most important 

objective, arguably one could also consider a standard economic welfare criterion as a 

guiding principle for the Blockchain Designer. 

To further aspects can be important for a Blockchain Designer. First, he may aim at 

minimizing the rewards received by malicious agents, as this decreases their future 

influence. Second, the Blockchain Designer may want to distribute rewards to validators 

as equally as possible, which is an original motivation of staking. We will discuss to which 

extent these aspects materialize when we present our results. 

 3.3 Staking Pool Formation Game 

We consider the following game, which consists of three stages: 

Stage 1: Agents decide either to form a staking pool or not (both honest and 

malicious). Agents who decide to become a pool owner obtain an identification 

number, denoted by i. 

                                                        
10 In some contexts it is called mining reward. 



Copyright © 2024. Blockchain.com Inc. NMLS ID# 2024031 All rights reserved. 

Stage 2: Agents who did not register for a staking pool decide whether to delegate 

their stake to some staking pool or to remain idle. 

Stage 3: The blockchain runs, validation takes place (or not), and rewards are 

distributed. 

If an agent i forms a staking pool, we denote by si the amount of stakes he is receiving. 

We also denote by P the measure of honest agents who form a staking pool. D and I denote 

the measure of honest agents who delegate their stakes or stay idle, respectively. 

We have H = P + D + I. 

Our main assumption for this game is that delegators distribute themselves evenly 

across all possible pools. The rationale is that the type of a pool owner is private 

information, and for delegators, pool owners are all alike. Hence, invoking measure 

consistency, this assumption implies 

 

We note that all pools obtain the same amount of delegated stakes and thus we write 

s for si in the following. The total size of the pool—stakes of the pool owner and delegated 

stakes—is then s + 1. We note that (s + 1)(P + M) + I = D + P + M + I = M + H. 

The payoffs are determined as follows: The next validator11  is chosen among the 

available pools proportionally to the pool size. The reward for the next block is given by 

an amount R. Since all pools have the same size, the return distribution is a uniform 

distribution with density . Hence, the individual reward a pool expects to receive is

. We note that both the individual return for an individual and the cost of running 

a pool have zero weight in the average return R and the average amount of costs, 

respectively, since we are working with a continuum to simplify the description. However, 

we show in Section 8.3, how the analysis—albeit in a much more complicated way—can 

be performed in a discrete framework and how we can recover results in that framework. 

The blockchain designer sets a parameter, denoted by λ, 0 < λ ≤ 1, which determines 

how rewards have to split between pool owners and delegators. To sum up, the individual 

expected rewards are as follows: 

• A pool receives . 

• The pool owner obtains λ · r. 

• An individual delegator obtains . The total amount given to the delegators in a 

pool is (1 − λ) · r. 

• An idle agent obtains 0. 

                                                        
11 In blockchains, transaction validation is done by creating a new block. 
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We measure the probability that the blockchain operates correctly by a function 

Pc(·) : [0,T] → [0,1], 

that depends on the share of honest agents running staking pools, that is (weakly) 

increasing as a function of this share, and which may reach probability one if a sufficient 

share of honest agents is participating in validating transactions. Later in this paper, we 

will study two different versions of this probability function and reward schemes that 

depend on it. In the basic version of the staking pool formation game, we assume that the 

returns are paid, no matter whether the blockchain operates correctly or not. The 

motivation for this assumption is as follows: Whether or not the blockchain operates 

correctly may not be immediately detected or agents maybe able to sell their rewards 

immediately after writing the next block. Hence, agents involved in validating 

transactions aim at maximizing the immediate returns from these activities in such cases. 

The Blockchain Designer is, of course, interested in how well the blockchain is 

functioning. In Section 8.2, however, we make rewards dependent on the operation of 

blockchains, that is, rewards are only distributed if the blockchain operates correctly. 

The main design parameter λ ∈ [0,1] is a non-negative real number set by the Blockchain 

Designer. A game with a payoff structure as above, together with (H,M,R,F,λ), is called a 

“staking pool formation game” and is denoted by G. 

 4 Equilibrium Analysis 

In this section, we analyze the equilibria of a staking pool formation game. 

 4.1 Equilibrium Concept 

In a staking game with non-zero reward R, an honest agent will never stay idle. The reason 

is that since delegation is free of cost and delegators earn some reward, the expected 

payoff is positive for a delegator, whereas the payoff for staying idle is zero. Only in the 

case λ = 1, agents would be indifferent between delegation and staying idle. Hence, 

delegation weakly dominates staying idle and so H = P + D. 

In Section 8.1, we will consider the case where delegation comes at a small fixed cost 

and so, staying idle will not be dominated in general. For tractability we assume a 

tiebreaking rule. First, if an honest agent is indifferent between delegating and staying 

idle, he will choose to delegate. This implies that when there are no delegation costs, no 

agent remains idle. 

We now proceed by focusing on equilibria of the threshold type. In particular, we solve 

for the threshold equilibrium by looking at the agent with a specific cost level c∗ at which 
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this agent is indifferent between running a pool and delegating, i.e., the expected utility 

from delegating is equal to the expected utility from running a pool. 

An important remark is in order. If a threshold equilibrium exists, it is unique. If a 

threshold equilibrium does not exist, we end up in a corner solution—either no honest 

agent will run a pool or all honest agents will run a pool, and thus there will be no 

delegation. 

We introduce the following definition: 

Definition 1 (Threshold Equilibrium) 

A cost level c∗ > 0 is called a “threshold equilibrium” if an agent with cost c∗ is indifferent 

between running a staking pool and delegating. Furthermore, all agents incurring a cost 

that is lower than c∗ will run a staking pool, and all agents with a cost greater than c∗ will 

delegate. 

In the threshold equilibrium we have P = F(c∗)H and D = (1 − F(c∗))H. 

 4.2 Equilibrium Characterization 

Note that a strategy profile in which no honest agent runs his/her own pool is always an 

equilibrium of the game G. In the following we are looking for the other equilibria, in 

which at least some fraction of honest agents decide to run own pools. We characterize 

the equilibria of the staking game: 

Theorem 1 

There exists a unique threshold equilibrium to the game G if and only if 

 . (1) 

Proof. First, we have to set up the indifference condition for an honest agent. That is, we 

have to equate the expected utility from being a delegator with the expected utility from 

running a pool. More precisely, the expected utility from being a delegator is 

, 

which is the share (1 − λ) of the reward r, divided by the number of delegators, for the 

particular pool. Similarly, the expected utility from running a pool is 

λr − c, 

which is the share λ of the reward r, minus the cost c of the particular pool owner. In the 

equilibrium point c∗, an honest agent is indifferent between delegating and running a pool, 

that is, c∗ solves the indifference equation: 

 . (2) 
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From the equilibrium definition, we know that P = F(c∗)H and D = (1 − F(c∗))H. 

Plugging in these values in (2) and simplifying, we obtain: 

 . (3) 

We reorder equation (3) as follows: 

 . (4) 

We note that the left hand side (LHS) of equation (4) is obviously increasing in c∗, while 

the right hand side (RHS) is decreasing in c∗. Indeed, the derivative of the RHS with respect 

to c∗ is 

. 

Since the LHS of (4) is increasing and is equal 0 for c∗ = 0, and the RHS is decreasing in c∗, 

the necessary condition to have a solution to the equation is that the RHS is positive for c∗ 

= 0. That is, we have the condition 

, 

which is, for c∗ = 0, equivalent to the condition in the theorem, 

. 

The indifference condition of the equilibrium of equation (4) to have an internal 

solution is obtained by taking c∗ = T. In this case, the LHS has to be larger than the RHS, 

which is equivalent to: 

. 

Note that here we assume that the expected gains from delegation, , are equal 
to 0 if all honest agents are running their own pools. This is consistent with the continuum 
model, where each agent is assumed to have a size zero. 

To establish uniqueness, suppose that . As shown above, if we focus on threshold 

equilibria, there exists a unique equilibrium characterized with the cost level c∗. Suppose 

that an equilibrium exists which is not of the threshold type. Without loss of generality, 

assume two cost levels c1 and c2 with c2 > c1, with the following property. A agent with cost c2 

will run a pool, while a agent with c1 will delegate. Hence, for the first agent, it must hold that 

, 

while for the second agent, we must have the opposite inequality, that is, 

. 
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Together, this implies that 

, 

which contradicts the assumption c2 > c1. Hence, any equilibrium will be of threshold type. 

 

Since all equilibria are of the threshold-type, we simply refer to threshold-type 

equilibria as “equilibria”. 

The interpretation of the lower bound condition on λ in the theorem is 

straightforward. To have a positive measure of pools owned by honest agents, the share 

of the reward for the pool owners should be higher than the share of malicious agents in 

the whole system. As long as λ satisfies this condition, we have a unique equilibrium of 

the game G. From the proof of Theorem 1, it is straightforward to see that if , 

then the only solution to the indifference condition is c∗ = 0 and hence, all honest agents 

will delegate and malicious agents control all stakes. If , then there exists no 

equilibrium solution, where a positive measure of honest agents run pools. 

The second condition of the theorem is automatically satisfied if the support of the 

random variable X is infinite. On the other hand, if it is finite, then for the right end point 

of the support, T, the payoff coming from everyone running their own pool should be 

lower than the cost. 

If the first condition of the theorem holds, but the second condition is violated, then in 

the equilibrium, everyone runs a staking pool. However, it is useful to look at polar cases. 

For instance, if the Blockchain Designer wants to encourage some level of delegation, i.e., 

not all honest agents should run their own pools in the equilibrium, the second condition 

of the theorem has to hold. 

 5 Optimal Reward Design 

In this section, we use the framework developed in the previous sections to design 

blockchains that maximize security or, alternatively, maximize welfare. 

 5.1 Maximal Blockchain Security 

We obtain the equilibrium solution of (3) for a given λ by simply solving for c∗. We denote 

it by c∗(λ). The inverse function is denoted by λ(c∗), and can be trivially found from (3). 

Namely, 

 λ(c∗) = ∗
c

R∗ 
+ 

(1+−F(1R(c−∗))FRH(c∗))H . (5) 

F(c )H+M 

λ is a designer’s variable. 

We assume in this section that the probability that the blockchain operates correctly 

is given by: 
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. 

That is, the probability that the next block consists of correct transactions is equal to 

a share of honest pool runners. This is a simple formulation, reflecting that the next block 

writer is chosen uniformly at random. However, our analysis holds qualitatively for any 

probability function that is increasing in the share of honest agents and may reach 1 if a 

sufficient share of honest agents is achieved. 

The first goal of the designer is to maximize the share of honest agents running pools, 

that is, to maximize P(c∗). The probability that the blockchain is run correctly depends on 

P, which is increasing with increasing c∗. Increasing λ has two effects on the honest agents’ 

decision. First, it motivates an agent to run a pool, as a greater share of the rewards is 

allocated to the owner of the pool. On the other hand, since a higher λ motivates many 

agents to run pools, there are many pools, and therefore, lower chances for each of them 

to win the reward. However, we obtain the following result: 

Proposition 1 

The fraction of honest agents running a pool is maximized for λ = 1. 

Proof. Note that the RHS of (4) is increasing in λ. By increasing λ, we have to increase c∗ 

to have equality, as the RHS is decreasing in c∗. That is, if λ1 ≤ λ2, then c∗(λ1) ≤ c∗(λ2). Taking 

the maximum value λ = 1 transforms equation (4) into 

 . (6) 

The solution to this equation maximizes the share of honest validators.  

We note that by setting λ = 1, in the threshold equilibrium of game G, we do replicate 

the levels of honest and malicious stakes involved in transaction validation which would 

arise in the simple game without delegation and no staking pools. In this game, instead, 

honest agents are allowed to either validate transactions or abstain. In such a game, the 

indifference condition of the threshold equilibrium corresponds to c∗ = r, equivalent to λ 

= 1 in the pool formation game. Yet, with λ = 1 and pool formation, all returns from 

validation are channelled to staking pool owners while delegators receive nothing. This is 

a concern for the future evolution of the blockchain since stake holding may be more and 

more concentrated on pool owners. 

We will see next that the solution λ = 1 does not maximize social welfare, and does not 

distribute the rewards on honest agents that have high costs of running a pool either. 

 5.2 Welfare Optimal Reward Schemes 

In this section, we consider the alternative objective the Blockchain Designer may pursue, 

namely taking into account that achieving maximal security may involve large costs, as 

too many honest agents with high costs participate in the validation process. For the 
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alternative objective, we normalize the returns from a successful operation of the 

blockchain per honest agent to one and express the costs relative to these returns. To 

quantify the gains and losses, we introduce social welfare of the game G. 

Definition 2 (Social Welfare) 

Social welfare of the game G is defined as 

 . (7) 

The social welfare is calculated as the probability that the blockchain runs correctly, times 

the measure of honest agents, minus average pool running costs incurred by honest 

agents. 

Increasing λ has two competing effects on social welfare. First, it increases the number 

of honest agents who create their own pools. Therefore, the likelihood that malicious 

agents will write the next block is decreasing. Second, increasing the number of honest 

agents who create their own pools wastes a lot of costs of running pools. These two effects 

work against each other. In the following, we show that for a wide class of distribution 

functions, the social welfare optimum value is not polar. We obtain the following result: 

Theorem 2 

Let the cost distribution function satisfy F ′′(c) ≤ 0 for any c ∈ [0,T). If HM > (H + M)2T, then 

the optimum value maximizing welfare is c∗ = T. On the other hand, if HM < (H +M)2T, then 

there is a unique optimum value of c∗ that maximizes the social welfare. 

Proof. The welfare (7) can be rewritten as 

. 

The derivative of W with respect to c is equal to: 

. 

The second derivative is equal to: 

. 

We note that given F ′′(c) < 0, the second derivative is always negative, that is, the welfare 

function is concave. It is easy to verify that W ′(0) > 0. That is, if W ′(T) < 0, which is 

equivalent to HM < (H +M)2T, we have a unique optimum solution. If, on the other hand, 
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W ′(T) > 0, equivalent to HM > (H + M)2T, then the optimum is achieved in the point c∗ = T. 

 

Note that the uniform distribution function satisfies the condition F ′′(c) ≤ 0. In fact, all 

distribution functions of the type F(c) = cα, where α ≤ 1 satisfy the condition of the 

theorem. 

 6 Uniform Cost Distribution 

In this section, we analyze the equilibria that maximize blockchain security and calculate 

the welfare optimal values for c∗ and λ for the case when costs are distributed uniformly 

on [0,1]. Furthermore, we study for the uniform distribution how rewards for malicious 

agents can be minimized. 

 6.1 Security Maximization 

To maximize the share of honest staking pools, we have to solve equation (6). Hence, for 

uniform distribution on the interval [0,1], that is, F(c∗) = c∗, we have to solve the following 

quadratic equation: 

 c2H + cM − R = 0. (8) 

The positive solution is given by 

 . (9) 

If H = 1 and M = 0.4 and R = 1, then the solution to (8) is 82. This solution 

maximizes the share of honest staking pools. That is, approximately 82% of honest agents 

will run pools in the equilibrium. More numerical values are provided in Section 6.3. 

 6.2 Welfare Maximization 

For uniform distribution F, the welfare measure (7) simplifies to 

, 

where we used that P(c∗) = F(c∗)H = c∗H and 

. 

The derivative of W with respect to c∗ is 
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Z = 
3 p − 27 H 5 M − 2 H 3 M 3 + 

3 √ 
3 

√ 
27 H 10 M 2 +4 H 8 M 4 

Note that W ′(c∗) = 0 has three solutions. Furthermore, 0 for 

any non-negative c∗. This means that the real-valued extremum (which is in the interval 

[0,1]) of W is a maximum. By simply solving W ′(c∗) = 0, we obtain the following real-

valued solution which maximizes W: 

 , (10) 

where. The welfare function is maximized at c∗. Numerical examples follow in the 

subsequent section. 

 6.3 Numerical Illustrations 

In this subsection, we provide detailed security maximizing (see Section 6.1) and welfare 

maximizing (see Section 6.2) 

equilibrium values for three sets of 

parameters in Table 1 and Table 2. In Table 

1 the values for c∗ are given by Equation (9). 

In Table 2 the values for λ and c∗ are given by Equations (5) and (10), respectively. 
3 

Table 1: Maximizing the measure of honest staking pools: P. 

3 

Table 2: Maximizing social welfare: W. 

For example, consider the case where M = 0.4. Social welfare is maximized for cost c∗ 

= 0.497. That is, it is quite different from c∗ = 0.82, which is the value for maximizing the 

honest agents running a pool. On the other hand, λ = 0.8, the value optimizing welfare is 

also quite different from λ = 1, the value maximizing the share of honest agents running 

their own pools. 

 6.4 Malicious Reward Minimization 

The share of rewards received by malicious agents as a function of λ is calculated in the 

following way: 

 . (11) 

To show the main result of this section, we first show a lemma that holds for any cost 

distribution function: 

H M R λ c∗ P(= c∗H) W 

1 0.5 1 1 0.78 0.78 0.305 

1 0.4 1 1 0.82 0.82 0.341 

1 1 1 1 0.85 0.85 0.357 

H M R λ c∗ P(= c∗H) W 

1 0.5 1 0.83 0.5 0.5 0.375 

1 0.4 1 0.8 0.497 0.497 0.431 

1 1 1 0.77 0.491 0.491 0.475 
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Lemma 1 

Rewards for malicious agents when  are lower than rewards for λ = 1, for any cost 

distribution function F. 

Proof. In the first case, where , we have c∗ = 0, and therefore, using (11), rewards 

are equal to 

. 

In the second case, rewards are equal to 

. 

Since F(c∗(1)) ≤ 1, the lemma is proved.  

Next, we show the main result of this section: 

Proposition 2 

Rewards to malicious agents µ(λ) are minimized for  for a uniform cost distribution 

function on the interval [0,1]. Moreover, µ(λ) is increasing or first increasing and then 

decreasing on the interval . 

Proof. We verify the derivative of the share of rewards received by malicious agents with 

respect to c∗ for a uniform cost distribution. It is given by, 

 . (12) 

Note that the denominator is always positive. In Equation (5), λ is given as a function of 

c∗. The derivative is 

. 

After plugging this into Equation (12), the numerator of (12), Mλ′(c∗)(c∗H+M)−HMλ, is 

given by 

. 

Again, note that the denominator is always positive and hence, we only consider the 

numerator, H2c∗3(HM − M) + H2c∗2(HM − 4M2) + 2Hc∗(HM2 − M3) + HM3. For c∗ = 0 

(equivalent to λ = M/(H + M)), it is positive, and for  

(equivalent to λ = 1), it is, depending on H,M and R, either positive or negative. 

As increasing (decreasing) λ yields increasing (decreasing) c∗ and vice versa, (12) 

translates easily. Therefore, given (1) from Lemma 1, the minimum value is 
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achieved in the point . From the observation (1), we see that the 

derivative cannot always be negative. Therefore, it is either always positive, implying that 

µ(λ) is increasing on the whole interval [HM+M ,1], or the derivative is first positive and then 

negative, implying that µ(λ) is first increasing and then decreasing.  

This result suggests that rewards to malicious agents are minimized in the corner case, 

where only malicious parties run pools. In that case, however, the probability that the 

blockchain functions correctly is equal to 0. Therefore, from the blockchain security 

perspective, designer needs a higher λ. Our result suggests that once λ is large enough (λ 

≥ tλ) for the blockchain security to cross the required threshold specified by a system, the 

designer only needs to verify endpoints of the interval [tλ,1], for minimizing rewards to 

malicious agents. 

We next provide numerical examples for the share of rewards that malicious agents 

receive for a uniform cost distribution when λ = 1 and λ < 1. 

First, for λ = 1, the malicious agents’ reward share is PM+M, with P = F(c∗)H, where 

c∗ is given by (9). For λ = 1,H = 1,R = 1 the share of rewards that malicious agents receive 

is given by 

2M 

. 

M + √M2 + 4 

We summarize some values in Table 3. 

3 

Table 3: Share of rewards for malicious agents when λ = 1. 

Second, for λ < 1, the malicious reward share is , with Pλ = F(c∗)H, where c∗ is the 

real-valued non-negative solution to (3). We first solve the indifference equation as 

follows: With uniform distribution, we obtain from (3), 

 0 = H2c∗3 + (MH − H2)c∗2 − (RH + MH)c∗ + λR(H + M) − RM. (13) 

To find the roots of this cubic equation, we can write (13) as 0 = ac∗3 + bc∗2 + cc∗ + d, where 

a = −H2, 

b = H(H − M), c = H(M + R), d = −λR(H 

+ M) + MR. 

Let 

H M R Share of 

Reward 

1 0.5 1 0.390388 

1 0.4 1 0.327922 

1 1 1 0.282376 
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∆0 = b2 − 3ac 

= H2((H − M)2 + 3H(M + R)), 

∆1 = 2b3 − 9abc + 27a2d 

= H3(2(H − M)3 + 9H(H − M)(M + R) + 27HMR) − λ · 27H4R(H + M). 

Then, we define 

 , (14) 

and the three roots of (13) are given by 

 , (15) 

where  and k = 0,1,2. 

We summarize some values in Table 4. 

H M R λ Share of 

Reward 

1 0.5 1 0.99 0.395647 

1 0.5 1 0.9 0.414172 

1 0.5 1 0.8 0.416164 

1 0.5 1 0.7 0.409608 

1 0.5 1 0.6 0.396822 

1 0.5 1 0.5 0.378318 

1 0.4 1 0.9 0.35305 

1 0.4 1 0.8 0.357138 

1 0.4 1 0.6 0.345172 

1 0.4 1 0.5 0.331877 

1 0.4 1 0.4 0.313697 

1 

1 

1 

1 

1 
3 
1 
3 
1 
3 
1 
3 

1 

1 

1 

1 

0.9 
0.5 
0.4 
0.3 

0.307422 
0.294599 
0.28047 

0.261626 

Table 4: Share of reward that malicious agents receive. 

 7 Return Competition 

In this section, we reconsider the staking pool formation game. Instead of the Blockchain 

Designer, we allow that pool runners choose both their own levels of rewards and the 

rewards they want to distribute to delegators. A pool owner i sets his own λi. This game 

is a variant of the game G studied so far in the paper. 
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In the first part of this section, we allow free return competition, that is, pool owner i 

can choose any λi ∈ [0,1]. We denote this game by G0. Hence, the game unfolds as follows: 

Stage 1: Agents (both honest and malicious) either decide to form a staking pool or 

not. Agents who decide to become a pool owner obtain an identification number, 

denoted by i, and set λi. 

Stage 2: Agents who did not register for a staking pool decide whether to delegate 

their stake to some staking pool or to remain idle. 

Stage 3: The blockchain runs, validation takes place (or not), and rewards are 

distributed. 

We obtain the following result: 

Proposition 3 

In any equilibrium of the game G0, malicious agents control all stakes involved in transaction 

validation and the blockchain is disrupted. 

Proof. Suppose that there exists an equilibrium in which honest agents run staking pools. 

Since running such staking pools is costly and there is zero measure of honest agents with 

zero costs, such an equilibrium necessarily must involve that the minimal value of all 

offered values λi by staking pool owners, denoted by λˆ, must be positive. Otherwise, 

honest agents are better off by delegating their stakes. Note that the last statement holds, 

since an individual honest agent has no influence on the probability that the blockchain 

operates correctly by his/her decision whether to run a staking pool or to delegate, 

However, every malicious agent has an incentive to deviate and to set a lower value of 

λˆ for his/her own staking pool in order to attract more delegators, thereby making 

staking pools for honest agents unattractive. Hence, all honest agents delegate. This is a 

contradiction that honest agents run staking pools. Hence, in any equilibrium, malicious 

agents control all stakes involved in transaction validation and the blockchain is 

disrupted..  

In the second part of this section, agents are only allowed to choose their 

corresponding λi from the interval [λ,¯ 1], where . We denote this game by Gλ¯. 

Invoking standard Bertrand competition logic, we obtain the following result in this case: 

Proposition 4 

The equilibrium of the extended game Gλ¯ is the same as the equilibrium of game G. 

Proof. First, we note that in the equilibrium, all malicious agents choose the lowest 

possible level λ¯. If honest agents choose any λ that is strictly larger than λ¯, then nothing 

is delegated to them. Therefore, they also choose the same λ¯.  
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That is, imposing a lower bound on λ also guarantees the same upper bound. This adds 

to the robustness of the result obtained in Theorem 1 and offers a way to implement the 

equilibrium solution. On a practical side, the blockchain system does not need to force the 

agents to have the same level of rewards. Rather, they reach it through rational play. Note 

that setting any lower bound  would result in the same (bad) equilibrium 

obtained in Proposition 3. 

 8 Extensions 

In this section, we study two extensions of our basic model. In first extension, we 

introduce a cost of delegation and in the second extension, we study the case when 

rewards are realized endogenously. Finally, we outline how the analysis has to be 

performed in a discrete framework and how we can recover results as the one in Theorem 

1 in a discrete framework. 

 8.1 Costly Delegation 

In this subsection, we include costs of delegation. Arguably such costs are non-zero, since 

agents have to obtain the knowledge how to delegate safely their stakes to staking pools, 

which lock-up conditions are attached to such operations and how to observe the returns 

from delegation in comparison to other alternatives. This takes time and involves 

opportunity costs. We denote by cd > 0 the costs of delegation. 

Costs for delegation introduce new trade-offs, as large values of λ may motivate honest 

agents to run pools but simultaneously discourage honest agents to delegate to pools, as 

they may simply stay idle. We will see that staking pools and suitably chosen sharing 

parameters for λ may increase blockchain security in such cases. 

To prepare the analysis, let us first assume that the strategy set only consists of 

running a pool and delegating. We denote this game by Gd. The indifference condition in 

this game is the same as (4), with only one difference—the RHS has the additional 

summand cd. 

 . (16) 

We obtain the following auxiliary result: 

Proposition 5 

For any value of , the indifference cost level of the equilibrium solution of the 

extended game Gd is higher than the cost level of the equilibrium solution of G. 

Proof. The proof is analogous to the proof of Theorem 1. The additional term cd increases 

the RHS of (16), and therefore, the intersection of the LHS and RHS curves corresponds 
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to higher c∗. By plugging in c∗ = 0, and requiring LHS is lower than RHS, and simplifying 

we get: 

. 

 

Note that the lower bound on λ for a positive equilibrium in the game Gd is lower than 

the lower bound obtained in Theorem 1. However, in this game, it might be that the 

expected utility of running a pool minus the expected utility of delegation is negative, but 

adding cd makes the RHS of (16) positive. In that case, individual rationality of pool 

running agents is violated. Therefore, if we consider an extended game Gdi, in which 

honest agents are allowed to be idle, then those with high costs would choose to stay idle 

instead of delegating. This also changes behavior of agents that run pools, in particular, 

they stay idle. That is, the strategy sets of agents are extended, and also the definition of 

the threshold equilibrium takes a new strategy into account. Namely, in the indifference 

condition only positive values are compared, as the strategy to stay idle gives zero utility. 

Formally, we obtain the following result: 

Proposition 6 

For , in the equilibrium solution of the game Gdi, no honest agent runs 

a pool. 

Proof. When ], the expected gain from running a pool minus 

expected gain from delegation is negative: 0, which violates 

individual rationality constraint for agents of the game Gd that run pools. That is, a weakly 

dominant strategy for them is to stay idle, in the game Gdi.  

Next, we ask if costly delegation can help to increase the level of honest agents running 

a pool. Note that λ = 1 maximizes the level without costly delegation. From equation (6), 

we find the level of c∗ such that agents with cost lower than this threshold will run a 

staking pool and those agents with costs higher than the threshold will stay idle, since 

delegation is costly. However, if we decrease λ in such a way that the expected return from 

delegation compensates the delegation cost cd, then all honest agents that were staying 

idle will delegate or run a staking pool. 

We obtain the following result: 

Proposition 7 

Costly delegation does not increase the highest blockchain security level of the benchmark 

game G, for any distribution function F(c). 
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Proof. We first look at the decision of agents whether to delegate or to stay idle. For values 

of λ that satisfy the following inequality: 

 , (17) 

honest agents delegate instead of staying idle. λd(c∗) is calculated from (16), that is, 

from the indifference condition of the game Gd. That is, c∗ should satisfy both conditions 

(16) and (17). 

Recall that in the benchmark case λ = 1 and cd = 0, the equilibrium cost level c∗ is a 

solution to the following equation: 

R c = 

. 

F(c)H + M 

In the costly delegation game, however, c∗ solves the equation (16), which together 

with (17) gives: 

. 

Given monotonic decreasing property of , we get that the equilibrium c∗ of the 

costly delegation game is always lower than the equilibrium level of game G.  

 8.2 Endogenous Rewards 

Throughout the paper, we assumed that rewards for writing the next block are 

exogenously given and are equal to a constant number R, no matter what fraction of 

honest agents runs pools and participates in the validation. In this section, we assume that 

rewards are realized only if the blockchain functions correctly, with probability one. This 

probability is calculated by the following formula: 

. 

Here θ is a real number in [0, ] that describes the tolerance of a system regarding the 

share of malicious agents it can handle without compromising network security. 

We say that full network security is achieved when 

 

Typically, for example in Byzantine-fault-tolerant protocols, θ is about  in many 

consensus protocols (see Lamport et al. (1982), Abd-El-Malek et al. (2005), David et al. 

(2017) and Dinsdale-Young et al. (2019)). Thus, in that case, if the fraction of staking pools 

run by honest agents is at least , then full security is achieved. 
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Requiring the probability of the blockchain security to surpass the threshold 1 − θ 

imposes a threshold on the cost of pool running in the equilibrium. We denote the 

corresponding game by Ge and the cost threshold by cθ. It is defined by the following 

equation: 

  (18) 

In this setting, to have a unique threshold equilibrium, we need 

 . (19) 

We obtain a result similar to the one of Theorem 1: 

Theorem 3 

There exists a unique threshold equilibrium c∗ > cθ to the game Ge if and only if 

  and . (20) 

The proof is analogous to the proof of Theorem 1. 

The results from the Section 7 on return competition are also translated directly in 

this setting. In particular, if the agents are allowed to set any λ ∈ [0,1] as their own pool 

return, the blockchain security fails. We denote this game by . Formally, we obtain the 

following result: 

Proposition 8 

In any equilibrium of the game  no honest agent runs a pool and the blockchain is 

disrupted. 

The proof is analogous of the proof of Proposition 3 and exploits the fact that 

individual honest agents have zero measure. Therefore, any unilateral deviation by an 

agent does not affect the probability that the blockchain operates correctly. outcome. 

 8.3 Discrete Case 

In this subsection, we show how the analysis can be recasted in the discrete framework— 

albeit in a much more complicated form. In particular, we show that the same lower 

bound condition on λ for having positive threshold equilibrium as in Theorem 1 can be 

obtained if we assume that the number of honest agents is a large integer n > 0, and 

replace the expected number of honest agents who run pools with nF(c∗). The latter 

approximately holds by Chernoff concentration bounds for large enough n. This 

observation adds to the robustness of the continuum approach, as it shows that the result 

obtained in Theorem 1 is not a byproduct of our assumption on having infinitely small 

agents. Rather, this assumption allows us to derive clean results more easily. 
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Let m ∈ N denote the number of malicious agents. By the assumption on c∗, we have k 

+ m pools, where k is distributed as binomial random variable with parameters n and 

F(c∗). In expectation, every pool will obtain  delegated stakes. Hence, every pool has a 

total expected stake of 1+ . If a pool is chosen (i.e. it becomes the new proposer), 

then all its delegators receive a reward. In expectation, the probability that a pool is 

chosen is  and the reward for all delegators who delegated to this pool is (1 − λ)r. 

The pool owners always face private cost c∗ and obtain the reward λr with probability 

. The expected utility of the single delegator is , where d is the number of 
delegators to that particular pool. 

Let d1,...,dk+m be non-negative numbers, such that Pi di = n − k, where di denotes the 

number of delegators to pool i. The ex-post utility of a delegator of a baking pool i, when 

pool i has di delegators: 

 1 + di r 

 (1 λ) , 

 n + m − di 

and for the pool owner, 

1 + di n 

+ mλr − ci. 

We model di as a binomial random variable,  
Next, we replace random variables with their means in the ex-post indifference 

equation, i.e., instead of di, we insert  and instead of k, we insert E[k] = F(c∗)n. 

Then, we obtain: 

 1 + di r 1 + di 

(1 − λ) = λr − c∗ n + m di n + 

m 

 1 + Fn−(cF∗)(nc+∗)mn r 1 + Fn−(cF∗)(nc+∗)mn 

 n + m(1 − λ) n−F∗(c∗)n = n + m λr − c∗ 
F(c )n+m 

 1 1 

 c∗ = λr − − (1 − λ)r. 

 F(c∗)n + m n F(c∗)n 

The left hand side is equal to 0 for c∗ = 0 and it is increasing in c∗. The right hand side 

is a decreasing function in c∗ and therefore, it should be non-negative for c∗ = 0, to have a 

positive solution in c∗. That is, 

 

For c∗ = 0, we take into account that F(0) = 0 for a distribution function F. Thus, we obtain: 
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1 1 m ≥ n 
− λ (1 λ) m λ ≥ 

. n + m 

 9 Conclusion 

In this paper, we initiated the study of the formation of staking pools from game-theoretic 

and mechanism design perspectives. Our insights can help to design reward distribution 

rules that improve the blockchain security and fairness of reward distribution. This study 

might open many further research avenues on how staking pools can be designed 

optimally for blockchains. For instance, one might introduce quantity constraints such as 

a leverage constraint on staking pools which limits the share of delegators towards the 

pool owner. Whether such a constraint further improves the security of the blockchain is 

left for future research. One might also allow the history of staking and running staking 

pools to play a role in dynamic versions of the game and thus, an agent’s reputation to 

behave honestly may be taken into account in such staking pool formation games. 
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Virtual directions of how to subscribe to all “STAKING” packages in Blockstake.ai 

 

Blockstake.ai offers staking services for various cryptocurrencies, allowing users to earn rewards by 

participating in the validation process of blockchain transactions. The platform provides a user-

friendly interface and secure infrastructure for staking, with support for multiple digital assets. 

Blockstake.ai aims to simplify the staking process for cryptocurrency investors and help them 

maximize their returns through efficient and reliable staking services. 

 

 
          Control panel. (Full analysis of a user account). 

 Clicking on “my investments” will take you to the investment page where all the staking packages are listed.      
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Investment page. 

 

There are 3 staking packages that are listed here; 

1. Simple earn (10days project) 

2. Project staking (30days) 

3. Defi staking (flexible) 

 

1. Simple earn. Instead of participating in the validation process of blockchain transactions alone, coins under 

simple earn package participate in the validation process of blockstake market transactions and BTU smart 

contracts to be able to earn as much as up to 0.90% daily rewards depending on the market deposit and 

withdrawal frequency or BTU smart contract performance. 
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Maths analysis; 

                       With minimum of $10 and maximum of $2,000 on 0.98% daily rewards (current rate), if 

$1,000.00 is staked on the 10 days project, 

                                                                           $1,000 x 0.98% ÷100 = $9.80      $9.80 x 10days = $98.00 

User will earn $9.80 daily reward and a total of $98 at the end of the 10 days project. 

 

 

 

2. Project staking: This is a locked staking package that allow users to earn rewards by participating in the 

validation process of blockchain transactions and other blockchain smart contracts. It is an amazing package 

with minimum investment of $2,000.01 and maximum of infinity depending on the plan your capital falls 

in, as listed in the investment page. 

Note; these plans are chosen automatically according to the volume of your investment. 

 

Maths analysis: 

 

Plan1: $2,000.01 to $30,000.00 on 0.99% daily reward (current rate). if $15,000 is staked for 30days, 

                                                        $15,000 x 0.99% ÷ 100 = $148.50     $148.50 x 30days = $4,455.00 

User will earn $148.50 daily reward and a total of $4,455.00 at the end of 30 days. 

 

Plan2: $30,000.01 to $60,000.00 on 1.15% daily reward (current rate). If $50,000 is staked for 30 days, 

                                                        $50,000 x 1.15% ÷ 100 = $575.00     $575.00 x 30days = $17,250.00 

User will earn $575.00 daily reward and a total of $17,250.00 at the end of 30 days. 

 

Plan3: This is the best plan in this package, with a minimum investment of $60,000.01 and maximum of 

infinity on 1.45% daily reward and a 35% interest compounding. If $100,000 is staked for 30days, 

$100,000 x 1.45% ÷ 100 = $1,450       $1,450 – 35% = $942.50 

User will earn $1,450 per day. But, 35% of it will go back to the principal remaining $942.50 which will drop 

to the available balance. this will therefore increase the next day reward to;  

$100,507.50 x 1.45% ≈ $1,457.40 

Same thing will go on until the end of 30days. But if there’s no compounding, user is expected to earn 

$43,500.00 at the end of 30days but the 35% compounding will increase it. 

 

 

3. Defi staking (flexible): This is a flexible(limitless) staking package that allow users to earn rewards by 

participating in the validation process of blockchain transactions and other blockchain smart contracts. This 

package can only be ended manually by the user by clicking the release  button as indicated by the red arrow 

in the screenshot above. With a minimum of $10,000.00 and maximum of infinity on 0.90% daily reward for 

as much days as the user wants. Flexible staking is capable of running for over 365 days and more. 

if the least minimum of $10,000 is staked for 0.90%(current rate) reward per day, user will earn as much as 

$90 per day for as long as the staking lasts. 

 

NOTE: Daily reward percentages are fully influenced my market sentiments and smart contract 

performances. BTU are added up at the end of every locked staking duration as bonuses. 
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Clicking on “create a new investment” on the investment page will bring you to this deposit page 

 

On this deposit page, user should select any of the staking packages (as described above) as plan investment. 

Enter the amount you choose to invest, then click on “INVEST NOW” which will take you to where you will 

find the specific wallet address of the coin you selected. There are 8 approved coins at the moment as listed 

under the “replenish account and create an investment”. Once your deposit is confirmed in the given 

address, it will reflect on your blockstake “total invested” and your staking will start counting immediately. 

 

Note; follow the instruction on the address page carefully. Click on “PROCESS” after copying the address to 

save it. After clicking on “PROCESS”, you will be returned to this page with a notification at the top of the 

page that your plan is saved, waiting for your deposit to be confirmed. 

User can invest in multiple plans at the same time. You can reinvest from available balance by clicking on 

“INVEST FROM INTERNAL BALANCE” and selecting the specific coin you have funds in. the balance on each 

coin will be displayed beside it. 

 

THIRD-PARTY coin sellers may be introduced for investors that wants to buy directly into their staking account. 

For easy deposit with card or bank transfer. 

User will have to paste the copied address in the provided space by the Third-party API and carefully complete 

the KYC as demanded by the API. 
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Withdrawal 

 

 By clicking on GO TO MY BANK, it brings you to this page that will enable you to withdraw from your blockstake 

account into your private wallet. 

The available amount on each coin will be displayed below it. Click on the withdraw button below to get to the 

proper withdraw page. Follow the instructions properly and the withdrawn amount will be successfully sent to 

your private account. 

 

NOTE: Big transfers may require further identity verifications to make sure that the funds are truly withdrawn 

by the real account owner. 

 

DO NOT SHARE YOUR LOGIN INFORMATIONS WITH ANY UNTRUSTED THIRD-PARTY. Blockchain.com inc, has a 

strong privacy policy. Your data remains intact no matter the circumstance.  

 


